

Research projects in reproduction and synthesis of spatial sound for virtual reality

Ville Pulkki

Department of Signal Processing and Acoustics School of Electrical Engineering Aalto University, Helsinki, Finland

August 16, 2018

Background

- Background
 - Early project with amplitude panning
 - Ambisonics recording methods
 - Parametric time-frequency-domain spatial audio tools

- Background
 - Early project with amplitude panning
 - Ambisonics recording methods
 - Parametric time-frequency-domain spatial audio tools
- Spatial audio effects

- Background
 - Early project with amplitude panning
 - Ambisonics recording methods
 - Parametric time-frequency-domain spatial audio tools
- Spatial audio effects
 - Syntesis of spatial width
 - Spatial modulation of sound

A music student with MSc (Eng) needs extra income (1995)

- Sibelius Academy chamber music hall had lots of loudspeakers on walls and ceiling
- SibA wanted to have a "panning tool" for their loudspeaker system (one month salary for student)

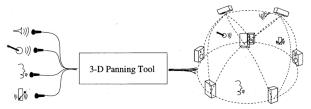
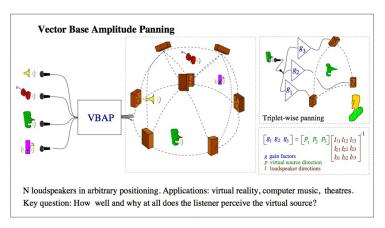


Fig. 9. Possible use of three-dimensional VBAP panning tool. Number of sound sources can vary up to eight; loudspeaker placement is arbitrary; virtual sources may be moving or stationary.

I62 J. Audio Eng. Soc., Vol. 45, No. 6, 1997 June

Cortadio Engineering Society, me. 199



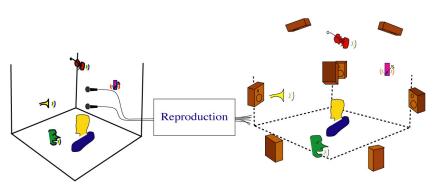
A music student with MSc (Eng) needs extra income (1995)

- Helsinki Univ Tech had a self-made 8-channel AD/DA for music instrument synthesis
- Paid student project with 1-month salary

Vector base amplitude panning

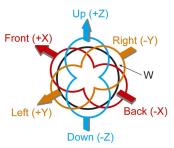
PhD degree in 2001.

Products with "VBAP inside"


- ITU MPEG-H audio standard (broadcast)
- DTS:X audio format (cinema + blueray) (88 movies already)
- Sony Playstation VR (gaming)
- Dedicated audio programming softwares

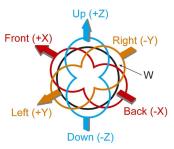
Time after PhD (2001–)

Spatial sound recording captured my mind


How could a sound field be reproduced

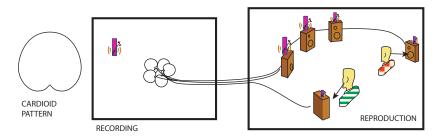
Problems with existing techniques

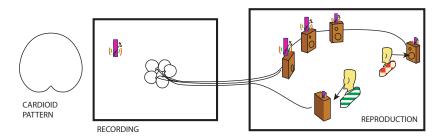
First-order B-format recording



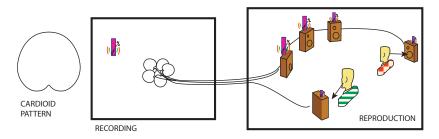
www.soundfield.com

Captures signals with zeroth-order and first-order spherical harmonics

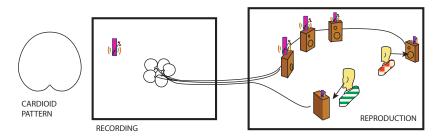

First-order B-format recording


www.soundfield.com

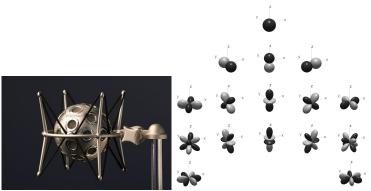
- Captures signals with zeroth-order and first-order spherical harmonics
- Pressure signal W. 3D velocity signals XYZ.



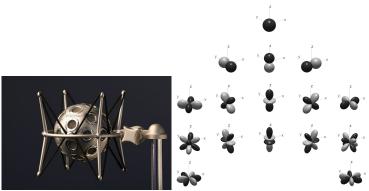
Weighted sum of WXYZ signals (mixing, matrixing)



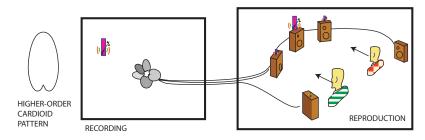
- Weighted sum of WXYZ signals (mixing, matrixing)
- High coherence between loudspeaker signals


- Weighted sum of WXYZ signals (mixing, matrixing)
- High coherence between loudspeaker signals
- Spectral and spatial issues, very small listening area

- Weighted sum of WXYZ signals (mixing, matrixing)
- High coherence between loudspeaker signals
- Spectral and spatial issues, very small listening area
- Blurred images in headphone listening

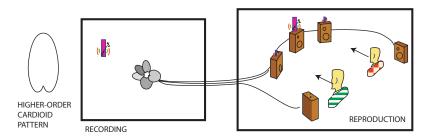

Higher-order B-format recording

■ Signals with directional patterns following to spherical harmonics

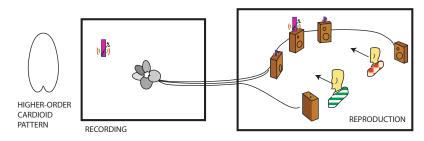


Higher-order B-format recording

- Signals with directional patterns following to spherical harmonics
- Reproduce plane-wave expansion over loudspeakers



More spherical harmonics captured

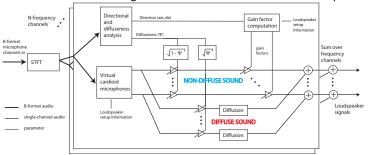


- More spherical harmonics captured
- Better resolution, more expensive devices

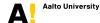
- More spherical harmonics captured
- Better resolution, more expensive devices
- Good quality in limited frequency window



- More spherical harmonics captured
- Better resolution, more expensive devices
- Good quality in limited frequency window
- Emphasized problems with low-frequency noise and high-frequency aliasing


Parametric time-frequency-domain techniques

Directional audio coding / COMPASS / Other similar techniques

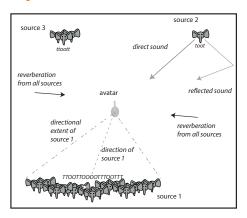


Parametric time-frequency-domain techniques

Directional audio coding / COMPASS / Other similar techniques

- Analyze/synthesize the directional parameters of sound field
- Non-linear signal-dependent signal processing method
- In 90% of recordings, the audio quality is improved prominently

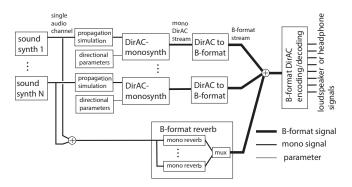
Commercial application


Head-mounted audiovisual displays

■ Reproduction

- Head-mounted visual display + headphones
- Both video and spatial audio are updated with head tracking information
- Generic representation of audio in DirAC is well-suited for this

Virtual reality

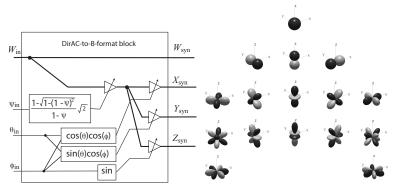


■ Insert a B-format microphone on the position of the avatar!

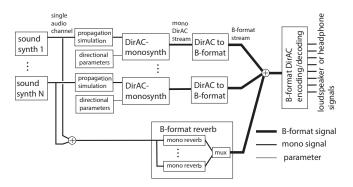
Pulkki

Audio engine based on B-format stream

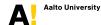
First-order / Higher-order B-format bus

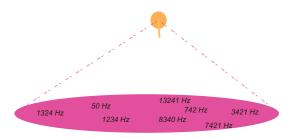

Synthesis of B-format signal

- Level
- Propagation delay
- Panning direction
- Spatial width of source
- Direct-to-reverberant ratio
- Distribution of reverberant energy (?)

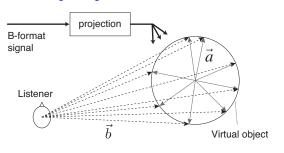

Synthesis of B-format signal

- higher-order synthesis also possible
- multiply each signal with corresponding spherical harmonic




Audio engine based on B-format stream

- Can perform all tasks needed in typical virtual world rendering
- Demo




Synthesis of spatial extent of virtual sources

- Different frequencies of mono input to different directions
- Demo

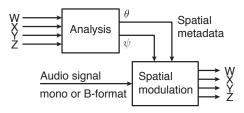
Projection of real B-format recordings into virtual reality objects

Spatial audio effects

Spatial modulation

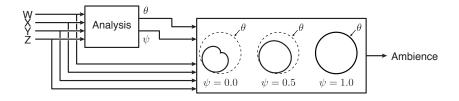
Spatial audio effects

- Spatial modulation
- Modification of diffuse component of sound



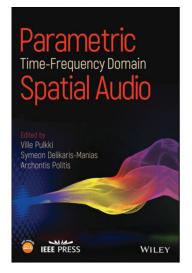
Spatial audio effects

- Spatial modulation
- Modification of diffuse component of sound
- Spatial zooming, rotation,


Spatial modulation

- Spatial information comes from a real situation, and audio from another recording
- Demo

Ambience extraction



- Possible to effect only reverberant parts of sound
- Demo

A reference

- 15 chapters, 416 pages
- Matlab code
- Published in Dec 2017

